Roll No. Total Printed Pages - 4

F - 3852

M.A./M.Sc.(Previous) Examination, 2022 Mathematics

Paper Second (Real Analysis)

Time : Three Hours]

[Maximum Marks : 100

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit - I

1. (a) Define Riemann - Stieltjes integral in brief. If P* is a refinement of P, then show that

 $L(P, f, \alpha) \leq L(P^*, f, \alpha)$ and $U(P^*, f, \alpha) \leq U(P, f, \alpha)$

- (b) State and prove the fundamental theorem of calculus.
 - P.T.O.

(c) If $Y:[a,b] \rightarrow R^{K}$ be a curve and if $c \in (a,b)$, then prove that

$$\wedge_{y}(a,b) = \wedge_{y}(a,c) + \wedge_{y}(c,b).$$

Unit - II

- 2. (a) Show that by a rearrangement of the terms of a conditionally convergent series, the rearranged series can be made to converge, diverge or oscillate.
 - (b) State and prove Weierstrass approximation theorem.
 - (c) Define radius of convergence of a power series. Show that the series obtained by integrating or differentiating a power series term by term has the same radius of convergence as the original series.

Unit - III

- (a) State and prove the generalized version of chain rule.
 - (b) If $u_1, u_2, u_3, ..., u_n$ are functions of $y_1, y_2, y_3, ..., y_n$, and

F - 3852

3.

[3]

 $y_1, y_2, y_3, \dots, y_n$, are functions of $x_1, x_2, x_3, \dots, x_n$ then show that

 $\frac{\partial(u_1, u_2, u_3, ..., u_n)}{\partial(x_1, x_2, x_3, ..., x_n)} = \frac{\partial(u_1, u_2, ..., u_n)}{\partial(y_1, y_2, y_3, ..., y_n)} \times \frac{\partial(y_1, y_2, ..., y_n)}{\partial(x_1, x_2, ..., x_n)}$

(c) Define stationary point of a function. Give Lagrange's multiplier method for an extremum for any function F.

Unit - IV

- 4. (a) Define Lebesgue measurable set. Show that a set A is measurable if and only if its complement A' is measurable.
 - (b) Define Borel measurable set and prove that a Borel measurable set is Lebesgue measurable.
 - (c) Prove that a function f is of bounded variation on [a,b] if and only if f is the difference of two monotone real valued functions of [a,b].

Unit - V

- 5. (a) If (X, B, μ) be a measure space, $E_i \in B$, $\mu(E_i) < \infty$ and $E_i \supset E_{i+1}$ then $\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{x \to \infty} \mu(E_n)$
 - (b) State and prove Minkowski's inequality.
 - (c) State and prove Egoroff's theorem.