Roll No.

F-3852

M.A./M.Sc.(Previous) Examination, 2022

Mathematics
Paper Second
(Real Analysis)

Time : Three Hours]
[Maximum Marks : 100

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit - I

1. (a) Define Riemann - Stieltjes integral in brief. If P^{*} is a refinement of P, then show that
$L(P, f, \alpha) \leq L\left(P^{*}, f, \alpha\right)$ and
$U\left(P^{*}, f, \alpha\right) \leq U(P, f, \alpha)$
(b) State and prove the fundamental theorem of calculus.
(c) If $Y:[a, b] \rightarrow R^{K}$ be a curve and if $c \in(a, b)$, then prove that

$$
\wedge_{y}(a, b)=\wedge_{y}(a, c)+\wedge_{y}(c, b)
$$

Unit - II

2. (a) Show that by a rearrangement of the terms of a conditionally convergent series, the rearranged series can be made to converge, diverge or oscillate.
(b) State and prove Weierstrass approximation theorem.
(c) Define radius of convergence of a power series. Show that the series obtained by integrating or differentiating a power series term by term has the same radius of convergence as the original series.

Unit - III

3. (a) State and prove the generalized version of chain rule.
(b) If $u_{1}, u_{2}, u_{3}, \ldots \ldots . . . u_{n}$ are functions of $y_{1}, y_{2}, y_{3}, \ldots \ldots \ldots y_{n}$, and
$y_{1}, y_{2}, y_{3}, \ldots \ldots . y_{n}$, are functions of
$x_{1}, x_{2}, x_{3}, \ldots \ldots . x_{n}$ then show that
$\frac{\partial\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right)}{\partial\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)}=\frac{\partial\left(u_{1}, u_{2}, \ldots, u_{n}\right)}{\partial\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)} \times \frac{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}$
(c) Define stationary point of a function. Give Lagrange's multiplier method for an extremum for any function F.

Unit - IV

4. (a) Define Lebesgue measurable set. Show that a set A is measurable if and only if its complement A ' is measurable.
(b) Define Borel measurable set and prove that a Borel measurable set is Lebesgue measurable.
(c) Prove that a function f is of bounded variation on $[a, b]$ if and only if f is the difference of two monotone real - valued functions of [a,b].

Unit-V

5. (a) If (X, B, μ) be a measure space, $E_{i} \in B$, $\mu\left(E_{i}\right)<\infty$ and $E_{i} \supset E_{i+1}$ then $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\lim _{x \rightarrow \infty} \mu\left(E_{n}\right)$
(b) State and prove Minkowski's inequality.
(c) State and prove Egoroff's theorem.
